
Research Internship (PRE)
Field of Study: SIM

Scholar Year: 2015-2016

Distributed learning for high-dimensional
wind energy production forecasting

Confidentiality Notice
Non-confidential report and publishable on Internet

Author:
David OBST

ENSTA ParisTech Tutor:
Hasnaa Zidani

Promotion:
2017

Host Organism Tutor:
Pierre Pinson

Internship from May 9, 2016 to August 12, 2016
Name of the host organism: Technical University of Denmark
Address: DTU, Building 325

Elektrovej
2800 Kgs. Lyngby, Denmark

Distributed learning for high-dimensional wind energy production forecasting

2 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

Confidentiality Notice

This present document is not confidential. It can be communicated outside in paper format
or distributed in electronic format.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

3

Distributed learning for high-dimensional wind energy production forecasting

Abstract

With their cheap maintenance and operating costs, renewable energy sources are a great opportunity
to increase profits in electricity markets. However they are also subject to very high variability, and as such
a bad prediction of their expected production can cause high losses too. That is why recently interest for
very-short term prediction (between 5 and 30 minutes-ahead) of solar and wind energy production has
soared. One of the most successful ideas for the latter has been to take advantage of spatial dependencies
between wind power plants. This has been performed in [1] with success, but needed owners of wind
farms to share their data which may not always be possible due to competition in electricity markets.
The matter of privacy was addressed in both [2] and [3] with the use of the Alternative Direction Method
of Multipliers (ADMM), which allowed to distribute a master optimization problem among actors of a
smart grid, thus avoiding the sharing of data. Despite satisfying results, the methods from the aforemen-
tioned papers required the hypothesis of stationarity of the electricity production (which is rarely true
for wind energy) and were expensive in computations. Furthermore they involved numerous and large
exchanges during the learning process, which makes their implementation in real life difficult. This paper
tackles these issues through the development of an online distributed learning method which still relies
on the ADMM as basis. Protection of information, being one of the major constrains in this problem, is
achieved through the introduction of encryption matrices. Finally the developed online ADMM algorithm
is applied on a data set of power measurements of 349 Danish wind farms and its performance compared
with state-of-the-art methods.

Index terms - Very-short term forecasting, Distributed optimization, Online learning, Alternative
Direction Method of Multipliers, Encrypted learning, Sparse estimation.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

5

Acknowledgment

I would like to thank my tutor Pierre Pinson who invited me to take part in this exciting project, and
who gave me advice and guided me during my whole internship. I would also like to thank Yannig Goude
who put me in contact with sir Pinson and without whom I would probably never had taken interest in
statistics.
I also thank the Université Paris-Saclay who gracefully accorded me a scholarship, as well as Yannick
Pérez who wrote a support letter to help me to apply for it. Many thanks to Hasnaa Zidani too who has
accepted to be my referent teacher for this project.

Finally I would like to thank my friends and family who keeps supporting me no matter what, with a
special mention to Niklas Vespermann whom I met at DTU and who has become a very good friend.

6 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

Contents

Confidentiality Notice 3

Abstract 5

Acknowledgment 6

Contents 7

List of Figures 9

Introduction 10

Nomenclature 11

I Organization of the distributed learning problem and analysis of state-of-the-art meth-
ods 12
I.1 Context of the work and state-of-the-art . 12

I.1.1 Improving forecasts to increase profits in electricity markets and for system operators 12
I.1.2 State-of-the-art . 13

I.2 Mathematical modelization of the problem . 15
I.2.1 Organization of the learning problem . 15
I.2.2 Performing distributed learning through the Alternative Direction Method of Mul-

tipliers . 17
I.2.3 Algorithmic scheme of ADMM . 18

I.3 Shortfall and drawbacks of batch ADMM . 20
I.3.1 The limit of the stationarity hypothesis . 21
I.3.2 Convenience of the batch ADMM algorithm in real life 22

II Development of Online ADMM for distributed learning 24
II.1 Transitioning from batch to online estimation . 24

II.1.1 Differences between batch and online learning 24
II.1.2 The difficulty to develop an online scheme in our case 25

II.2 Encrypted online ADMM . 26
II.2.1 Encrypted OADMM formulation . 26
II.2.2 Organization of the learning problem with OADMM 30
II.2.3 Reduction of the size of the exchanges when compared to batch ADMM 32

II.3 Analysis of OADMM’s performance on synthetic data 33
II.3.1 Stationary autoregressive data . 33
II.3.2 Non-stationary data with structural breaks . 35

II.4 A complete test case on the Danish data set . 38

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

7

Distributed learning for high-dimensional wind energy production forecasting

II.4.1 Tuning of λ, ρ and of the dynamic forgetting factor 39
II.4.2 Case of a single windfarm (mp = 1) . 40
II.4.3 Case of a portefolio of mp = 15 wind farms . 41
II.4.4 Case of the system operator . 42

II.5 Future development possibilities . 43
II.5.1 Improving of the compatibility with the dynamic forgetting factor 43
II.5.2 Quantile regression . 44

Planning of the internship 45

Conclusion 46

Bibliography 47

Glossary 48

Appendices 49

A Omitted calculations of the ADMM 51
A.1 Expression of the fusion center z . 51
A.2 Shooting for calculating the β update . 51

B Calculations of the online least-squares algorithm 54

C Omitted calculations for the online ADMM scheme 56
C.1 Detailled calculations of the βit update . 56
C.2 Proof of the OADMM algorithmic scheme with dynamic forgetting factor 57
C.3 Additional plots for the test cases and the case study 58

C.3.1 Bi-weekly structural breaks for the gaussian data test case 58
C.3.2 Issues in estimation for b and λ/ρ simultaneously set at high values 59
C.3.3 Overlapping of real data yt and its different estimations ŷt for the Danish data set 60

8 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

List of Figures

I.1 Organization of the distributed problem . 16
I.2 Plot of a non-zero coefficient of β with a structural break at t1 = 3500 and its batch

ADMM estimations for different sizes Tbatch of the learning set 22
I.3 Boxplots of RMSE improvement (in %) of batch ADMM relatively to regular AR for

different sizes Tbatch of the learning set and different grid sizes m 23

II.1 Working principle of the dynamic forgetting factor µt 29
II.2 Organization of the online distributed problem . 32
II.3 Average estimation over the N = 20 simulations of the 8 non-zero coefficients of β for

λ = 5 and ρ = 0.5 . 34
II.4 Sparsity (in %) of the average estimator β̂ over the N = 20 simulations, over time and

for different λ . 35
II.5 `1 error ∑

i∈Ωp
|β̂i − βi| of the average estimation over the N = 20 simulations 35

II.6 Average estimation of the non-zero coefficients of βt with a single structural break,
without dynamic forgetting factor . 36

II.7 Average estimation of the non-zero coefficients of βt with a single structural break, with
dynamic forgetting factor . 37

II.8 Average value over the N = 20 simulations of the dynamic forgetting factor µt 37
II.9 Comparison of performance of OADMM with ADMM and OLS for single wind farms

(mp = 1) . 41
II.10 Comparison of performance of OADMM with ADMM and OLS for portefolios of size

mp = 15 . 42
II.11 Comparison of performance of OADMM with ADMM and OLS in the case of the system

operator . 43

A.1 Principle of shooting at one step p to calculate the approximation βjp of β∗j 52

C.1 Soft-thresholding operation for the calculation of a coefficient of βit 57
C.2 Average estimation of the non-zero coefficients of βt, with seasonally happening structural

breaks . 59
C.3 Average value over the N = 20 simulations of the dynamic forgetting factor µt 59
C.4 Unstable estimation of the non-zero coefficients of βt due to an excessive b and threshold

λ/ρ . 60
C.5 Overlapping of real data {yt} and its estimates {ŷt} for the three different methods, for

mp = 15 and ma = 20 . 61

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

9

Introduction

In order to increase profits in real-time electricity markets or to reduce operational costs for a sys-
tem operator, predicting wind power production with increased accuracy is of major importance. One
of the best ideas which has been found to improve predictions was to use neighbouring wind farms to
improve one’s own forecasts. However until now, existing methods either need to openly share data,
which cannot be done in general due to confidentiality issues, or need to suppose the stationarity of wind
energy production, which is a very limiting hypothesis and which may cause inaccurate forecasts in case
of changing weather conditions.

That is why the goal of this project in which I was involved with Pierre Pinson at the Elektro lab-
oratory of DTU was to develop an online learning algorithm through the Alternative Direction Method
of Multipliers. We aimed at developing a method which would be cheap in calculations, yield good
results, and which would be easy to implement in real life. The long term objective would be the devel-
opment of a platform for wind power plants agents of an electricity market, where they could safely help
each other to improve their forecasts without worrying about the privacy of their data. The research
project was rather independent from other projects going on at the laboratory. It was furthermore a
rather open project since with sir Pinson we did not know if it would be concluded with success, fail-
ure, or with open possibilities. The reader will see that the project, though not completely over, has
overall been a success, even if not every expectations have been met and that areas of improvement exist.

Therefore the first part of this report will present the concrete motivations behind of our work, the
model we chose and the reasons explaining the choice of the Alternative Direction Method of Multipliers
to perform distributed learning. The second part will focus on the newly developed algorithm, called
online ADMM (OADMM). It will present the calculations, heavily emphasizing on the privacy of data,
and will then present results obtained when applied on synthetic data and on real power data. Finally
possibilities of development of OADMM will be discussed.

10 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

Nomenclature

In this paper, two general conventions for notations are adopted. The first is that vectors are written
in bold, matrices in the blackboard bold style and scalars with regular font. Another convention is that
temporal or loop indexation is made with indices (for example βt or βk) whereas spatial indexation
(usually denoting a given agent i) is made with exponents (e.g. βi).

Symbol Description

| · | Either the `1 norm or the absolute value
‖·‖ The euclidian norm
Ωp Portefolio of the central agent
Ωa Set of contracted wind farms
mp Number of wind farms of Ωp

ma Number of wind farms of Ωa

m Total number of wind farms of the grid, i.e. m = mp +ma

X Design matrix
Xi Submatrix of X corresponding to agent i’s data
xt Line t of design matrix X. Alternatively vector of data at instant t
xj,t Power production of wind farm j at moment t
Y Response vector corresponding to design matrix X
yt Response data at instant t. It can thus also be the t-ieth coefficient of Y
` Maximum lag of an autoregressive model
β Vector of coefficients of an autoregressive model
β̂ Estimation of β
λ Shrinkage parameter of the lasso penalization
ρ Parameter of the augmented lagragian Lρ
µ, µt Respectively a forgetting factor and dynamic forgetting factor
Mi Encryption matrix of agent i
Ki Secondary (orthogonal) encryption matrix of agent i

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

11

Part I

Organization of the distributed learning
problem and analysis of state-of-the-art
methods

Before starting the core of this project, which will be the subject of part II, the first objective of this
research project was to understand the context in which our work is done and comprehend in detail the
latest methods for very-short term wind energy production forecasting. Being aware of their strengths
and weaknesses is mandatory to understand why new methods need to be developed and why the decision
to use the use of the Alternative Direction Method of Multipliers was taken.
That is why after a presentation on electricity markets and brief discussion on the latest very-short term
forecasting methods in the field of wind power production, we will define the model which has been
used for wind energy production and present the main calculations of ADMM used on a stationary data
set. Results and limits will be discussed, emphasizing the need of innovating even further the distributed
learning approach.

I.1 Context of the work and state-of-the-art
Renewable energy sources occupy a particular role in electricity markets and for system operators.

They are the cheapest way to produce electricity, and therefore represent the energy sources with the
greatest potential of profits. However as everybody knows they are subject to high variability. Accurate
forecasting of wind production for instance is therefore a priority to be able to adapt energy production
coming from traditional sources such as coal or nuclear power plants and thus reducing expenditures.
Different methods have been developed in the field of very-short term forecasting (between 5 and 30
minutes-ahead), but have different properties or hypotheses on which they are based on.

I.1.1 Improving forecasts to increase profits in electricity markets and for
system operators

More and more electricity markets work in real time. In those real time markets, consumers usually
declare and pay their expected consumption shortly ahead (typically 15 or 30 minutes before actual
delivery of electricity), and producers answer by what they will be able to produce to satisfy the demand.
While traditional energy producers such as coal or nuclear power plants barely make mistakes on their
expected production, the same cannot be said for stochastic producers such as wind and solar power
plants whose production will either be above or below what they declared ahead. This leads to two
possible scenarii:

12 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART I. ORGANIZATION OF THE DISTRIBUTED LEARNING PROBLEM AND ANALYSIS OF
STATE-OF-THE-ART METHODS

• The total production is above the demand. Since electricity still can’t be stored in a reliable way,
regular producers must rebuy the excess of electricity. Obviously they do so when the rebuy price is
cheaper than their selling price. Stochastic producers on their side will sell their whole production,
however the excess will be sold at an inferior price than the market price. Inferior production to
what was declared on the opposite has no negative consequences.

• The total production is below the demand. This is a more problematic case, because it forces
traditional energy producers to quickly adapt their production, which rises the cost of energy. If
a stochastic source produces more than what it had announced, it helps to meet the demand and
as such has no penalty. However if what it produces is inferior to what it had announced, it must
buy the difference, which has a very high cost.

Therefore an improvement in very-short term wind or solar energy production forecasting would min-
imize the losses in both cases, this way increasing the earnings of participants of the electricity markets.
For the system operator, a better prediction of stochastic electricity production would allow him to be
more sure when he can reduce the activity of coal or nuclear power plants. This way he would reduce
his maintenance and operational costs, increasing his profit too.

To meet the demand of more accurate very-short term predictions, new mathematical methods have
been developed, which is the subject of the next part.

I.1.2 State-of-the-art
The number of wind power plants has been soaring the past years and there is no reason that this

trend will change in the next decade. One may therefore be interested in taking advantage of spatial
dependencies between wind power plants (WPP), something which had been rarely performed until
recently. This is the goal of the methods which are presented hereafter.

Vector Auto-Regression (VAR) and sparse Vector Auto-Regression (sVAR)

First of all, these methods make the hypothesis that contracts have been signed to share data be-
tween participants of a grid of wind power plants. As such there is no confidentiality in their produced
amount of electricity.

As one could easily imagine, close wind farms are exposed to similar meteorological conditions, such
as wind speed and direction for instance. Therefore they may share similarities in their energy production
at a given moment. Vector Auto-Regression (VAR) and Sparse Vector Auto-Regression aim at taking
advantage of those spatial correlation between wind farms. This can be achieved by reformulating a
regular AR model under a vectorial form where the scalar coefficients of autoregression are replaced by
matrices Bτ which account for the interdependencies between sites. If one puts the electricity production
at step t of the different wind power plants which have signed a contract in a vector Yt, this yields the
model:

Yt =
∑̀
τ=1

Bτ Yt−τ + εt (I.1)

where εt is a noise. While VAR already yields improvement of very-short term forecasts of a few
percent, often large sets of wind farms are considered and give matrices Bτ of at least size 60 × 60.
This leads to high computational costs. Moreover those matrices Bτ calculated this way lack sparsity.
This is an issue since usually only neighbouring farms hold interesting data for eachother and that too

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

13

Distributed learning for high-dimensional wind energy production forecasting

many coefficients may even decrease the quality of the estimation. That is why sparse VAR has been
introduced to address this issue. This has for example been performed in [1].
Sparse Vector Auto-Regression relies on the Bayesian Information Criterion and on Partial Spectral Co-
herence in order to select a very small number of non-zero coefficients, which correspond to the highest
correlation between certain wind farms in terms of electricity production. Furthermore this method can
be combined with probabilistic forecasts, which makes it more powerful than regular deterministic fore-
casts and allows to easily calculate confidence intervals.

Both sVAR and VAR have proved to achieve good performance when compared to regular AR. Indeed
after being applied to a set of 22 Australian wind farms, they have both improved prediction accuracy by
at least 1 % in terms of Root Mean Squared Error (abridged RMSE) and Mean Absolute Error (abridged
MAE, see II.15 for a definition of both criteria).

However notwithstanding those great results, as mentioned at the beginning VAR and sVAR need
operators of wind farms to sign a contract for sharing of data. However due to competition in electricity
markets and a desire of confidentiality, such contracts are very unlikely to be passed. That is why methods
needed to be found in order to guarantee secrecy of the data of different agents, while improving forecasts
quality by a similar amount than those methods.

sVAR through the Alternative Direction Method of Multipliers

Researchers were keen on keeping the idea of Sparse Vector Auto-Regression for improving wind
electricity production forecasts since it yields good results and allows to reduce calculations through
sparsity of matrices. However a method had to be found to avoid sharing of data. In order to do
this, the Alternative Direction Method of Multipliers has been chosen (the method will be presented
in detail in I.2.2). It may be used to split an optimization problem, which in our case means that it
can be distributed among the agents of the smart grid, effectively solving the matter of privacy. This
has been performed in the upcoming paper [2]. A VAR formulation identical to I.1 has been chosen for
the electricity production of all the wind power plants at step t. If one bases his estimation on data
available from time steps 1 to T , one can reformulate the problem under a matricial form as following.
All the vectors Yt (containing the electricity production of the different wind farms at step t) are put
together in a matrix Y , while all the coefficient matrices Bτ and all the past information vectors Yt−p
are respectively binded together into a matrix B and a design matrix X. This yields the matricial sVAR
formulation:

Y = BX + ε (I.2)

The goal is thus to estimate the coefficient matrix B, which is then applied on newly arriving data to
obtain forecasts. The method this time doesn’t rely on Bayesian Information Criterion or Partial Spectral
Coherence as in [1]. This time a least-squares problem will be solved to calculate B, and sparsity will be
ensured by adding a `1 penalty (called lasso penalty) to the least-square problem, i.e.

min
B
‖Y− BX‖F + λ|B| (I.3)

where ‖·‖F is the squared Frobenius norm and λ > 0 is a shrinkage parameter (more detail on the
latter will be given in I.2.1).

ADMM allows this optimality problem to be distributed among agents, who calculate their share
in the matrix B and then send it back to the one centralizing the optimization problem. This way

14 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART I. ORGANIZATION OF THE DISTRIBUTED LEARNING PROBLEM AND ANALYSIS OF
STATE-OF-THE-ART METHODS

the information is never shared directly, and still produces a sparse VAR structure as in the estimation
method presented above. Sparse VAR estimations obtained through the method presented in this section
generally improve forecasts from the method presented in the previous section by between 1% and 2%.
However this time the sparsity of the estimated matrix B is only around 40 %, whereas in the method
presented above it was around 90 %. This can thus increase the cost of calculation and also the financial
cost of performing ADMM, since every non-zero coefficient in the estimated matrix B may be needed to
be bought.

However seeing the efficiency of ADMM to distribute a learning problem among agents, it has been
decided to investigate further on which use one can do of it. This leads to the main topic of this paper
which uses ADMM to a full extend.

I.2 Mathematical modelization of the problem
The mathematical will be almost identical to the one used in [3] and will consist in an autoregressive

model with exogenous input, which means that surrounding wind farms also present in the electricity
market may be used to improve one’s own forecasts.

I.2.1 Organization of the learning problem
Let us consider an electricity market in which m wind farms participate. Every farm j produces a

given amount of electricity xj,t at step t, where all the productions have been divided by the nominal
capacity Pj of the corresponding wind farm j in order to scale them. In the grid we will take interest in
one given wind farm owner. We will call him the central agent and he will be the one who tries to improve
his forecasts. The central agent owns a set of wind farms, called a portefolio, Ωp = {sp,1, sp,2, . . . , sp,mp}
of mp wind farms. This set can either consist of one single farm (i.e. mp = 1), a couple of farms, or
even be the whole set of wind farms of the grid (i.e. mp = m). In the latter case the central agent is
the system operator.
On the grid, another set Ωa = {sa,1, sa,2, . . . , sa,ma} of ma other wind farms is present. The owners of
those farms will be referred as contracted agents. It is them who will help the central agent to improve
his production forecasts in exchange of something, which justifies the term of "contracted".
In order to make notations easier, the productions xj,t of the different wind power plants will be ordered:
the indices j ∈ {1, 2, . . . ,mp} will correspond to the productions of the farms from Ωp belonging to the
central agent. j ∈ {mp + 1,mp + 2, . . . ,m} will correspond to the farms of the contracted agents.

The goal of the central agent is to predict one step in advance his average electricity production yt
of his portefolio:

yt = 1
mp∑
j=1

Pj

mp∑
j=1

Pj xj,t

where t denotes one time step which is equivalent to 15 minutes in real life in our case.

The modelization we chose for the average production yt of the central agent is a stationary autore-
gressive model of lag ` which both takes in account the data of the portefolio Ωp of the central agent,
and the exogenous input coming from the contracted agents’ wind farms Ωa. This yields:

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

15

Distributed learning for high-dimensional wind energy production forecasting

yt =
mp∑
j=1

∑̀
τ=1

βj,τxj,t−τ +
m∑

j=mp+1

∑̀
τ=1

βj,τxj,t−τ + εt (I.4)

where the βj,τ are the coefficients of the autoregression and εt is a noise. Hence the first double sum
corresponds to the wind farms of his portefolio Ωp, while the second one corresponds to the farms Ωa of
the contracted agents. This equation may be formulated in the vectorial form

yt = xtβ + εt (I.5)

where xt ∈ Rm` is the vector containing all the data xj,t−τ for τ ∈ {1, 2, . . . , `} ordened by agent
and β ∈ Rm` is the vector of all βj,τ also ordened by agent. Both vectors may be thus rewritten
xt = [x1

t x
2
t . . . x

m
t] and β = [β1 β2 . . . βm], with each sub-vector xit or βi corresponding to agent i.

Figure I.1 describes the architecture of the learning problem and may make getting used to notations
easier.

Figure I.1: Organization of the distributed problem

In order to get a prediction of the average production of the central agent yt, we want to estimate
the autoregression vector β, namely β̂. The hypothesis is that the production is stationary, i.e. that
the coefficient β is constant over time. This debatable hypothesis will be discussed later on and is one
of the reasons why the estimation method must be improved. Since we want to perform predictions one
step (15 minutes) ahead, an estimation of the average production at time t obtained at time t− 1 would
thus be ŷt|t−1 = xtβ̂. One must be careful with the chosen notation since xt only holds information
from time t− ` to time t− 1, and not t.

Usually, such an estimator β̂ is calculated by solving a regular least-square problem. However in our
case, we try to ensure sparsity of the estimator. That is why we chose to use a lasso type estimator. As
mentionned earlier, lasso estimation consists in adding a `1 penalty to the least-squares problem. If one
has access to data corresponding to the time steps t between `+1 and T 1, putting all xt and yt together
in respectively a design matrix X and a response vector Y yields the batch lasso estimation problem:

β̂ = argminβ
1
2 ‖Xβ − Y ‖

2 + λ |β| (I.6)

1estimation cannot be started at steps below ` + 1 due to the nature of the AR model

16 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART I. ORGANIZATION OF THE DISTRIBUTED LEARNING PROBLEM AND ANALYSIS OF
STATE-OF-THE-ART METHODS

where λ ∈ R+ is a parameter which controls the size of the shrinkage. The greater it becomes, the
more the sparsity of the estimation β̂ will increase. However this comes to the cost of a small bias of
the lasso estimator (i.e. E[β̂lasso] 6= β) due to the shrinkage of the non-zero coefficients. However this
is a small price to pay to reduce to improve overall forecast through sparsity and to increase calculations
speed. The term "batch" refers to the fact that this estimation is carried out on a stationary data set,
the obtained estimation β̂ then being applied on new incoming data. Advantages and drawbacks of this
kind of estimation process is of major importance in this project and are discussed in I.3.1.

I.2.2 Performing distributed learning through the Alternative Direction Method
of Multipliers

Similarly to what has been performed in [2], the goal is to distribute the optimization problem I.6
among the different agents. The choice of method has been again the one of the Alternate Direction
method of the Multipliers (ADMM) since it yields good results. The main difference consists in that
in our case we only focus on improving the forecast of the central agent, thus having only a scalar
autoregressive model whereas in [2] the improvement of forecast was done for all the wind farms of the
grid.

General formulation and advantages of the ADMM

The ADMM is a variant of dual ascent which is particularly adapted to solve optimization problems
in which the objective function may be splitted into two functions. Let us consider for instance the
optimality problem where the objective function may be divided in two distinct parts :

min
β
f(β) + g(β)

ADMM consists in adding a supplementary variable z through affine constrains and then successively
minimizing the augmented lagragian of the problem Lρ on the main variable β and on the additional
one z. Typically the optimization problem rewritten under ADMM form is :min f(Az) + g(β)

s.t. β − Az = c

The introduction of the additional variable z permits to take advantage of the specificities of f and g
to perform efficient optimization and to break a master problem into parts which can be distributed. The
choice of minimizing the augmented lagragian over the regular one gives better convergence properties,
though increasing the difficulty of the optimality problem.

ADMM for our lasso problem

Let us consider our lasso problem (I.6). The objective function perfectly fits in the case of ADMM
since it may be split into to parts which are f(β) = 1

2 ‖Xβ − Y ‖
2 and g(β) = λ|β|. In order to put

the problem under ADMM form we introduce the variables zi ∈ R(T−`)m, i ∈ {1, 2, . . . ,m} through
the affine constrains Xiβ

i − zi = 0, where Xi is the submatrix of X corresponding to agent i (one has
X = [X1 X2 . . .Xm]). Considering the separability of the `1 norm | · |, the ADMM problem which is to
be solved is :

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

17

Distributed learning for high-dimensional wind energy production forecasting


min 1

2

∥∥∥∥∥
m∑
i=1
zi − Y

∥∥∥∥∥
2

+ λ
m∑
i=1
|βi|

s.t. Xiβ
i − zi = 0, ∀i = 1..m

(I.7)

and the corresponding augmented lagragian of parameter ρ, Lρ, is:

Lρ(β, z,u) =
∥∥∥∥∥
m∑
i=1
zi − Y

∥∥∥∥∥
2

+ λ
m∑
i=1
|βi|+ ρ

m∑
i=1

ui>(Xiβ
i − zi) + ρ

2
∥∥∥Xiβ

i − zi
∥∥∥2

(I.8)

where the ui are the scaled dual variables (ui = µi

ρ
if µi denotes the regular dual variable). The

linear and quadratic term in βi are usually put together, which yields the expression:

Lρ(β, z,u) =
∥∥∥∥∥
m∑
i=1
zi − Y

∥∥∥∥∥
2

+ λ
m∑
i=1
|βi|+ ρ

2

m∑
i=1

∥∥∥Xiβ
i − zi + ui

∥∥∥2
(I.9)

where the term −ρ2
m∑
i=1
‖ui‖2 has been dropped since minimization will occur on β and z and not

on ui. As mentioned earler ADMM procedure succesively minimizes Lρ on β and then on z. The u
update is performed last and consists in a regular dual ascent update. If k denotes the k-ieth step in the
iterations, then the roughest forms of the ADMM updates are:

βk = argminβ
{
Lρ(β, zk−1,uk−1)

}
zk = argminz

{
Lρ(βk, z,uk−1)

}
uik = uik−1 + Xiβ

i
k − zik

(I.10)

However as one can see, for now distribution of the learning problem has not been achieved and the
updates may seem complicated.

I.2.3 Algorithmic scheme of ADMM
The updates I.10 can in fact be drastically simplified. The augmented lagragian is separable in the βi,

which allows to distribute the updates of these variables among agents. Furthermore, other properties
and tricks will reduce the number of calculations needed to perform the updates and therefore increase
the efficiency of this method.

Updates of z and u

While the z and u update respectively occur in second and third during a loop, simplifications which
happen for them also allow simplifications for βi and explain why we are dealing with them first. For a
start we will focus on the z update.

Since the update is performed on z only, the second term of I.9 is dropped. Conversly to βi, the
augmented lagragian isn’t separable in z, which forces to perform a joint update on all the zi. While
this is achievable, it would mean to solve an optimization problem of m(T − `) variables. Usually m
is around 40 or 50, T around 5000, and ` is 2 or 3. Jointly minimizing on z = [z1 z2 . . . zm] would
therefore represent a huge computational cost. However this can be avoided with the introduction of
fusion centers. Let zk = 1

m

m∑
i=1
zik and Xβk = 1

m

m∑
i=1

Xiβ
i
k be, the indice k refering to the k-ieth step

of the loop of the algorithm. Those variables are called fusion centers since they gather all the different

18 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART I. ORGANIZATION OF THE DISTRIBUTED LEARNING PROBLEM AND ANALYSIS OF
STATE-OF-THE-ART METHODS

variables from the distributed problem. The problem of the z update is thus reformulated by introducing
z: 

zk = argmin
z

1
2 ‖mz − Y ‖

2 + ρ

2

m∑
i=1

∥∥∥Xiβ
i
k − zi + uik−1

∥∥∥2

s.t. 1
m

m∑
i=1
zi − z = 0

(I.11)

If ν denotes the dual variable for this problem, since the objective function is convex, a necessary
and sufficient optimality condition is the zero-gradient condition of the lagragian. The latter is written:

∀i = 1..m, −ρ(Xiβ
i
k − zi + uik−1) + ν

m
= 0

After summing for i from 1 to m to get the term ν

ρm
, we get the following expression for zik :

zik = z + Xiβ
i
k −Xβk + uik−1 − uk−1, where uk−1 = 1

m

m∑
i=1
uik−1. (I.12)

Let us now consider the ui update. It is uik = uik−1 +Xiβ
i
k−zik. If one reinjects I.12 in this update,

one obtains :

uik = uk−1 +Xβk − zk (I.13)

The dual variables are thus the same for all the agents, so that uk ≡ uk and doesn’t depend of
the agent i considered. Furthermore the additional variable zik of agent i is replaced by zk: the former
can also be completely replaced by the fusion center z. It can easily be obtained by solving I.11 after
reinjection of I.12 2, which yields:

zk = 1
m+ ρ

(Y + ρXβk + ρuk−1) (I.14)

Update of the βi

As one can see with I.9, Lρ is separable in the βi. This means that the updates can be performed
separately by the different agents. Furthermore, since the first minimization occurs on β, the first term
of the lagragian can be left out. Therefore one has:

βik = argminβi
{
λ|βi|+ ρ

2
∥∥∥Xiβ

i − zik−1 + uik−1

∥∥∥2 }
Using the results I.12 and I.13 one has ‖Xiβ

i − zik + uik‖ =
∥∥∥Xiβ

i − zk − Xiβ
i
k +Xβk + uk

∥∥∥
(since uik − uk = 0). The best form of the βi update is therefore :

βik = argmin
βi

{
λ|βi|+ ρ

2
∥∥∥Xiβ

i − Y i
k−1

∥∥∥2 }
where Y i

k−1 := Xiβ
i
k−1 −Xβk−1 + zk−1 − uk−1

(I.15)

The update scheme of the ADMM algorithm for a lasso-type estimation is thus performed as following:
2see appendix for this quick calculation

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

19

Distributed learning for high-dimensional wind energy production forecasting



βik = argmin
βi

{
λ|βi|+ ρ

2
∥∥∥Xiβ

i − Y i
k−1

∥∥∥2 }

Xβk = 1
m

m∑
i=1

Xiβ
i
k

zk = 1
m+ ρ

(Y + ρXβk + ρuk−1)

uk = uk−1 +Xβk − zk

Y i
k = Xiβ

i
k −Xβk + zk − uk

(I.16)

While every other variable has an explicit form for their update, βik is still formulated as the argmin
of an optimality problem. Instead of calculating explicitely βik (which would represent additional cal-
culation), a method called shooting may be used. Shooting consists is an iterative method which will
calculate the coefficients of βik independently. We will not elaborate here on shooting, and the reader
may find details about it at A.2 in appendix A.

If η indicates the minimal tolerated norm increment βk − βk−1 between interations and Mloop is the
maximum number of loops performed (both for the ADMM iterations and shooting) then the complete
batch algorithm goes as in Algorithm 1. 3

Algorithm 1 Batch distributed learning
1: Initialize β0, z0,u0 at 0 ; Initialize k at 1
2:
3: while ‖βk − βk−1‖ > η and k ≤Mloop do
4: for i = 1, . . . ,m do . Distributed among the agents
5: Update Y i

k−1 as in I.16
6: βik ← Shooting(Xi,Y

i
k−1, λ, ρ)

7: Agent i sends Xiβ
i
k to the central one

8: end for
9:

10: Central agent updates Xβk, zk and uk as in I.16
11: Central agent sends Xβk, zk and uk to the contracted agents.
12: k ← k + 1
13:
14: end while
return βk

I.3 Shortfall and drawbacks of batch ADMM
As one can see in [3], batch ADMM yields good results. Indeed, it improves forecast quality in terms

of RMSE and MAE when compared to regular AR by 1 % to 4 % percents. Furthermore, it yields sparse
estimators, though still not achieving the sparsity of the sVAR method. Notwithstanding those results,

3Note concerning line 3: Normally in the algorithm, one adds a minimal amount of loops to be performed to avoid it
of doing 0 loops. This has been omitted to make the algorithm easier to read.

20 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART I. ORGANIZATION OF THE DISTRIBUTED LEARNING PROBLEM AND ANALYSIS OF
STATE-OF-THE-ART METHODS

it has a share of drawbacks. These drawbacks may both pose a threat to the quality of estimation, but
also to the feasibility of distributed learning through ADMM in real life. In this part we will thus focus
on the limits of ADMM, which prove the need for another way of proceeding to distributed learning.

I.3.1 The limit of the stationarity hypothesis

When postulating the model I.4, we made the hypothesis that the wind production is stationary, i.e.
that β is constant over time. The issue is that wind production is subject to high variability, and as
such the coefficients of β may change over time, both in values and in the farms which have non-zero
coefficients. However the issue that since batch ADMM learns over a fixed data set and will average its
estimation over the whole data set.

In order to illustrate that point, we proceed to a test on non-stationary synthetic data. We first
generate a time-varying weight vector βt where only 8 coefficients are non-zero, and 80 coefficients are
zero. The 8 non-zero coefficients will be step functions with a structural break at instant t1 (which
means that at t = t1 their value will suddenly change). In this example, the structural break of βt will
be taken at t1 = 3500.
The synthetic design matrix X and response vector Y are then created as following: every column j of
X is obtained by generating a sample of length T = 7000 of gaussian data N (0, σ2

j), where σ2
j ∈ [0.2, 1].

The corresponding response vector Y is obtained by applying the following formula for each of its
coefficients yt:

yt = xtβt + εt

where xt is as usual the t-ieth line of X, βt is the value of the weight vector at step t and εt is a
noise. However due to randomness in the generation of such a pair (X,Y), we will repeat this procedure
N = 20 times with the same vector βt. This will tone down errors which could be linked to the specificity
of a given data set.

Batch ADMM is then performed on those N = 20 data sets (X,Y) for three different learning
periods Tbatch: one where Tbatch < t1 (learning only on data before the structural break), one where
t1 < Tbatch < T (where the majority of the data comes from before the structural break) and finally
one where Tbatch = T (as much data from before and after the structural break). Finally for each of
those three cases the average over the 20 simulations is taken, yielding three estimated weight vectors
corresponding to three different sizes of the learning set.

As one can see with fig. I.2, if Tbatch < t1 i.e. the learning is done before the structural break
happens, the value before the break is estimated. If t1 < Tbatch < T , which means that algorithm has
more data coming from before the structural break, the estimate value is closer to the first value before
the break. Finally if Tbatch = T , which means the learning algorithm has as much data from before and
after the jump, the estimated value is the average of both.

Since in the case of real data, the autoregression coefficients β will not be constant over time.
This fundamental limit of batch learning, which averages estimation over the learning time, may be very
detrimental to the quality of forecasts. That is why the ability to track time-varying parameters is needed
to improve forecast accuracy even further than with batch ADMM.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

21

Distributed learning for high-dimensional wind energy production forecasting

Figure I.2: Plot of a non-zero coefficient of β with a structural break at t1 = 3500 and its batch ADMM
estimations for different sizes Tbatch of the learning set

I.3.2 Convenience of the batch ADMM algorithm in real life
In the previous part, we showed that tracking was impossible with batch learning. It simply averages

regression coefficients over time, which would make an estimated vector β̂ obsolete after a major variation
of meteorological condition in a real life case. One could think that performing multiple small batch
estimations over time may tackle this issue, but this would reveal another flaw of batch learning.
Indeed, it needs large learning data sets in order to beat simple methods. This is illustrated with figure
I.3 which plots the relative improvement of batch ADMM over a regular AR estimation for different grid
sizes m and for different sizes of the learning set Tbatch. The test have been performed on a real data
set, namely the one which we will use again in II.4. N = 20 simulations have been performed for each
couple (m,Tbatch) and boxplots used in order to tone-down errors which could be linked to a particular
set of wind farms.

As one can see, the bigger the number of total agents on the grid m gets, the greater the learning
set must be for ADMM to be able to compete with simple methods. This is an issue since grids generally
gather more than m = 40 wind farms, for which batch ADMM would need more than 5000 samples
to learn (which represents 52 days of data). This great amount of data needed makes batch learning
unconvenient to use and the effective use of multiple batch procedures very difficult.

Furthermore, batch learning is expensive in calculations. If one considers that a vectorial operation
costs 1 flop in the programming language R, the distributed learning algorithm presented above yields
a global complexity which is generally between O(mMloop`

2) and O(mM2
loop`

2), where Mloop is the
maximal amount of loops tolerated in the global algorithm and the shooting one. With m ≈ 40 and
Mloop = 200, the computational cost can increase very quickly.

Finally, implementing the batch distributed learning algorithm in a concrete case is not an easy task.
It needs repeated exchanges between the central agent and the contracted ones, which make the de-
velopment of a platform where distribution would be done tedious. Furthermore because of the high

22 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART I. ORGANIZATION OF THE DISTRIBUTED LEARNING PROBLEM AND ANALYSIS OF
STATE-OF-THE-ART METHODS

Figure I.3: Boxplots of RMSE improvement (in %) of batch ADMM relatively to regular AR for different
sizes Tbatch of the learning set and different grid sizes m

number (Mloop) of exchanges, contracted agents may not agree to participate in the procedure. Besides
that, each exchange involves trading multiple vectors of size Tbatch, which leads to effective exchanges
of the size of a few megabytes. This may seem small, but one must keep in mind that in general in a
smart grid every actor both plays the role of central and contracted agent. With the increasing number
of wind power plants in smart grids this may lead to problems in data management.

Therefore online learning could also be the best solution to develop a platform where exchanges are
fewer and of smaller size, which would make it effectively feasible.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

23

Part II

Development of Online ADMM for
distributed learning

Wind production is as everybody knows very subject to variability. As such, wind electricity production
can’t be considered as stationary on long time scales. However in order to yield accurate estimations,
batch learning must be performed on large time scales on which the hypothesis of stationarity can’t hold.
That is why the main goal of this project was to elaborate an "online" version of distributed learning.
Online learning would not need the hypothesis of stationarity and achieve quicker calculations than batch
estimation through recursion. One must keep in mind that our main constrain is the confidentiality of
the data of the different agents and is what makes writing an online ADMM algorithm so difficult.

II.1 Transitioning from batch to online estimation
Online learning differs significantly from batch estimation. In this part we detail the major differences

between batch and online learning, as well as presenting why ADMM cannot be simply adapted to an
online scheme.

II.1.1 Differences between batch and online learning
Until now, we considered a fixed data set on which we performed one single estimation. The obtained

β̂ estimator is then kept once and for all, and is applied on new incoming data to obtain a forecast.
Online learning on the contrary is an "on-the-fly" method, which means that the estimation is adapted
whenever new data is available.
More precisely, in the case of online learning the loss function ` is not considered constant anymore. It
depends now on the time step t and changes at every iteration. Therefore an online learning problem at
step t may be written:

min
βt

1
2

t−1∑
τ=1

`τ
(
βt
)

And the goal is to find at each step βt which minimizes the cumulative loss over all the past iterations.

Usually, the minimization problem does not change a lot from step t to step t + 1: the true goal
is thus to obtain a recursive update of the estimatation βt through a small correction which takes into
account the new data obtained at iteration t+ 1. This is for instance the case in the most simple online

24 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

learning method, namely online least-squares.1. Based on the Newton-Raphson method, the update of
the estimator β takes the form of a scaled gradient depending on the most recent data available. Recur-
sion is what gives online methods the ability to track time varying signals, as long as their variations are
smooth enough. Furthermore, recursion dramatically drops the computational cost of estimation, thus
effectively adressing one of the issues of batch learning.

In our case, we add a `1 penalty to cause sparsity of the estimator and use a quadratic loss function.
Therefore the online lasso problem at iteration t may be written:

min
βt

t−1∑
`+1

1
2(xτβt − yτ) + λ|βt| (II.1)

II.1.2 The difficulty to develop an online scheme in our case
Sadly a simple Newton-Raphson method does not yield a recursive ADMM scheme in our case due

to the presence of the lasso penalty. In fact, developing a purely only scheme of ADMM seems to be a
complicated task.

Recently, online methods for it have been developed in [4] and [5]. However the method presented in
[4] is not purely online, since the estimator is updated by a matricial calculations and not by recursion.
The second method presented in [5] consists in performing a linear approximation of the loss function ,
which gives the possibility of a purely online update of the estimator under the right conditions. However
after running tests in our situation, it yielded even poorer results than OLS.
Furthermore, one of the major issues in our case is that the contracted agents don’t want to share their
data. This confidentiality clause needs to take particular measures to avoid direct data sharing, some-
thing which is not at all addressed in both papers mentioned above. In the case of batch learning, this
confidentiality was naturally ensured by the product Xβ, making that the information X was never shared
alone. Together the exchanges between central agent and contracted ones yielded a system with more
unknowns than equations, thus effectively protecting the data. In the method which has been developed
and which will be presented hereafter, sharing data under one form or another is not avoidable. However
the idea of a product protecting the data as in [3] has been the inspiration for the data protection system.

As one will see, we managed to develop a new online method to achieve distributed learning. However,
considering the remarks made above, calling it purely "online" wouldn’t be accurate. Indeed, it consists
in the sharing and updating of five quantities, on which only three are recursive. Moreover, one of the
non-recursive updates involves the resolution of a non-sigularm`×m` linear system which, though always
yielding an unique solution, costs O

(
(m`)c1

)
, c1 ∈]2, 3] flops. To comparison, the whole ADMM scheme

presented in the first part had a complexity between O
(
Mloopm`

2
)
and O

(
M2

loopm`
2
)
: the complexity

of our "semi-online" method has thus at least a quadratic complexity in the number of agents m, while
for the batch method developed above it was linear in the number of agents. We therefore expect the
online method to be slower than the one we have already presented.
Ergo one must keep in mind that despite the name of online ADMM we will use, the method is not
purely online but rather semi-online. We still don’t know if ADMM may be adapted to a purely online
fashion without approximations: no such algorithms do exist yet. It even might be that it isn’t possible
to completely adapt ADMM to online learning, and that if one wants to perform purely online distributed
learning, he or she should take interest in other methods.

1details on online least-squares can be found in appendix B

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

25

Distributed learning for high-dimensional wind energy production forecasting

II.2 Encrypted online ADMM
In this part we present the core of the work of this research project. The problems when using ADMM

to create an online estimation methods were mainly of two different natures. First of all, adapting the
ADMM scheme to the online formulation of our problem II.1 was a bit tricky. Secondly, we had to keep
information private since the contracted agents refused to share their data.
The adjective "encrypted" will be justified through the method presented below.

II.2.1 Encrypted OADMM formulation
Let us consider the online learning problem II.1. At first, we simply wanted to adapt what was done

for instance in [3] for the online case. However the major difference with it is that this time, it is not a
constant matrix which multiplies the estimator but a time varying vector. The problem is that ADMM
only deals with affine constrains which are constant over time, and thus could not be applied litterally in
our online learning problem. Therefore our first objective was to find a way to formulate II.1 appropriately
to use the ADMM.

The first possibility we saw to do so was to introduce the zi in the most simple way possible, namely
through the constrains βi − zi = 0,∀i. It would yield the following ADMM optimization problem:

min 1
2

t−1∑
τ=`+1

(
m∑
i=1
xiτz

i − yτ)2 + λ
m∑
i=1
|βi|

s.t. βi − zi = 0, ∀i ∈ {1, 2, . . . ,m}
(II.2)

However after developing to the end the calculations, it would inevitably lead to the sharing of the
vectors xit corresponding to the data of the different agents i, which is forbidden in our case.

However, pondering over the work [3], we had another idea for this kind of approach. What protected
the information in the batch case was the fact that the information X was always multiplied by the vector
β. Our idea was thus to introduce a matrix M which would serve a similar purpose, i.e. multiplying
xit in calculations every time it appears. We therefore introduce the additional variables zi through the
affine constrains βi −Miz

i = 0, ∀i, where Mi is a non-singular matrix of size ` × ` chosen privately
by agent i. We refer to these matrices as encryption matrices since they allow to protect the data
xit as it will be proved later. While in general the ADMM does not need to chose matrices which are
invertible for the constrains, not doing so might cause troubles of singularity in a few situations, hence
the additional hypothesis of Mi which are invertible. This does not cause a great loss of generality and
does not endanger the privacy of the data. The online ADMM optimality problem is thus:


min 1

2

t−1∑
τ=`+1

(
m∑
i=1
xiτMiz

i − yτ)2 + λ
m∑
i=1
|βi|

s.t. βi −Miz
i = 0, ∀i ∈ {1, 2, . . . ,m}

(II.3)

to which the augmented lagragian is:

Lρ(β, z,u) = 1
2

t−1∑
τ=`+1

(
m∑
i=1
xiτMiz

i − yτ)2 + λ
m∑
i=1
|βi|+ ρ

2

m∑
i=1

∥∥∥βi −Miz
i + ui

∥∥∥2
(II.4)

In order to make calculations clearer, we introduce the vectors β and z ∈ Rm` which result respectively
of the binding of vectors βi and zi, and the blockwise diagonal matrix M = diag(M1,M2, . . . ,Mm).

26 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

As a reminder, the ADMM scheme consists in minimizing the augmented lagragian successively over the
main variable β and the additional variable z.

Update of βi

The augmented lagragian is separable in the βi, which means that their updates can be performed
separably. Furthermore since the minimization occurs on the βi, the first term in z of the augmented
lagragian can be left out, which gives:

βit = argminβ
{
λ|βi|+ ρ

2
∥∥∥βi −Miz

i
t−1 + uit−1

∥∥∥2

︸ ︷︷ ︸
:=Lβi

}

Although the `1 norm is not differentiable, since it is convex it is sub-differentiable. As such we have
the optimality condition:

βit ∈ argminβLβi ⇔ 0 ∈ ∂Lβi(βit)

where ∂Lβi(βit) denotes the sub-differential of Lβi at βit. Finally a few calculations which are detailled
in the appendix yield the update at step t:

βit = Sλ/ρ(Miz
i
t−1 − uit−1) (II.5)

where Sλ/ρ is the vectorial soft-thresholding operator whose definition may be found in the glossary.

Update of z

This time, the second term of the augmented lagragian may be dropped. However it is not separable
in the zi this time, which means the minimization must be performed on z and not the different zi.
This is a major drawback and is precisely what impinges on our online ADMM method. In the case of
the batch ADMM, the problem of non-separability was solved through the introduction of a fusion center
z. While we would have enjoyed to be able to introduce either a fusion center z or Mz, this is not
possible due to the multiplication ofMiz

i by xiτ . It leads to a dead end and cannot be performed this time.

The zero-gradient condition with respect to z thus yields:

t−1∑
τ=`+1

(xτM)>(xτMz − yτ)− ρM>(βt −Mz + ut−1) = 0

Let Ht =
t∑

τ=`+1
(xτM)>(xτM) and Pt =

t∑
τ=`+1

(xtM)>yτ be. Finally the zt update is given by the
solution to the linear system:

(
Ht−1 + ρM>M

)
zt = Pt−1 + ρM>(βt + ut−1) (II.6)

Therefore in order to perform this update, the different contracted agents simply give the central
agent their share xitMi, the data being efficiently protected by the multiplication by the encryption
matrix. However as one can see, this update also needs to know M>M, which means that the different
agents would have to share their bloc of the matrix M>i Mi. The reader will see in the next section that
this poses a threat to privacy. Ergo the z update can’t be left as it is now to perform distributed learning.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

27

Distributed learning for high-dimensional wind energy production forecasting

Update of ui

This update isn’t problematic, is recursive and can even be distributed among agents :

uit = uit−1 + βit −Miz
i
t (II.7)

Updates of Ht and Pt
These two quantities are the major difference to the already existing OADMM methods. They indi-

rectly contain all the past information (xτ , yτ)τ=`+1,...,t and may be updated recursively:

Ht = Ht−1 + (xtM)>(xtM) (II.8)

Pt = Pt−1 + (xtM)>yt (II.9)
However the main issue if one lets these updates this way is that the quantities Ht and Pt progressively

store information over all the learning steps. After many iterations the matrices will have accumulated a
lot of past information, which might not be necessarly relevant anymore (especially in the case of wind
production which is variable). Ht and Pt will thus have a certain inertia to change. This will cause a
slowing down of convergence after a major change (this point is illustrated in part II.3.2). This kind of
problem is common in online learning procedures and may be addressed through the introduction of a
forgetting factor.

Introducing a forgetting factor µ ∈]0, 1] consists in reformulating the optimality problem as following:
min 1

2

t−1∑
τ=`+1

µt−1−τ (
m∑
i=1
xiτMiz

i − yτ)2 + λ
m∑
i=1
|βi|

s.t. βi −Miz
i = 0, ∀i ∈ {1, 2, . . . ,m}

The coefficient µ will thus help the algorithm to forget past data which might not be relevant for
current estimation. More precisely, it gives a memory of ν = 1/(1− µ) steps to the algorithm and thus
should be tuned according to the memory one desires to give it. While one could think that chosing a low
µ in order to give it a short memory is a good idea and improves tracking abilities, it is not as easy as that.
Indeed, there is always a tracking/stability quandary. Decreasing µ to improve tracking capacities causes
instability, especially in periods of stationarity. This finally drops the quality of estimation dramatically
and is counter-productive. That is why to adress this issue we introduce a dynamic forgetting factor
which would only enter in action during phases of major change. It takes the form of a sigmoid, similarly
to the one presented in [1]:

µt = 1− b

1 + exp
(
c(êt − a)

) (II.10)

where:

• êt is a mesure of prediction error over a given number of past steps, as for instance MAE or RMSE.
In our case we chose the MAE of the estimation over the past 3 iterations (we average over the 3
past iterations to tone down the effects of an eventual outlier) êt = 1

3
2∑

τ=0
|yt−τ − ŷt−τ |. This way

the forgetting factor will be effective when the prediction suddenly is far away from the real data
(which often means a change of parameters due to particular meteorological conditions) and allow

28 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

a "reset" of the algorithm. However the averaging will cause a small delay in the activation of the
dynamic forgetting factor, which is not a big matter though.

• b quantifies the maximum amount of forgetting. It should be tuned according of the minimum
memory one wants the algorithm to have ν = 1/b

• c tunes the abruptness of the slope at the inflexion point of the sigmoid.

• a is an activation threshold of the dynamic forgetting factor. One should tune a a bit above the
usual RMSE or MAE so that the dynamic forgetting factor activates when the estimation gets too
bad.

One may refer to figure II.1 to see how the dynamic forgetting factor enters into action a few lags
after the threshold has been crossed.

Figure II.1: Working principle of the dynamic forgetting factor µt

The formulation in the case of a dynamic forgetting factor is similar to the one of a regular forgetting
factor. Old data is multiplied by the dynamic forgetting factors of all the later steps, whereas the latest
incoming data is not multiplied by any forgetting factor to leave enough learning data to the algorithm.
The optimality problem to solve is therefore written:

min 1
2

t−1∑
τ=`+1

(t−1∏
k=τ+1

µk

)
(
m∑
i=1
xiτMiz

i − yτ)2 + λ
m∑
i=1
|βi|

s.t. βi −Miz
i = 0, ∀i ∈ {1, 2, . . . ,m}

(II.11)

Analogous calculations2 to the previous ones prove that the βi and z updates remain the same, while
the ones of Ht and Pt take the form:

Ht = µtHt−1 + (xtM)>(xtM) (II.12)
2which can be found in Appendix C

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

29

Distributed learning for high-dimensional wind energy production forecasting

Pt = µtPt−1 + (xtM)>yt (II.13)

II.2.2 Organization of the learning problem with OADMM

The organization of the online learning problem is quite different from the batch one. While the batch
ADMM algorithm only needed a contracted agent to send Xiβ

i
k to the central agent, the online version

needs the sharing of xitMi, M>i Mi and finally the term M>i (βit + uit−1) to achieve distributed learning.
The problem is that by sending all this, the central agent has the opportunity to find his way back to
the information of an agent xit. Indeed, let us consider the three shared information in the algorithmic
scheme:

• ŷit|t−1 = xitβ
i
t and βit, respectively the estimation of agent i’s part of yt and tof the total vector of

the autoregressive model. ŷit|t−1 is shared so that the central agent can get his forecast, while βit
is shared to see if it is worth contracting the agent in question or not (if βi ≈ 0 it means that the
farm of agent i doesn’t add a lot of accuracy to the estimation and might be a waste of money).
It gives one equation with ` unknows which are the coefficients of xit ∈ R`.

• xitMi: since Mi ∈M`(R), it gives the central agent ` equations and `2 other unknows.

• M>i Mi gives him `2 additional equations with no further unknowns.

• M>i (βit+uit−1). This finally yields ` other equations with ` more variables through uit−1 (the reader
might have noted that it is not necessary for the different agents to directly share uit−1 though) .

The central agent has therefore `2 +2`+1 equations for `2 +2` variables. Although the system is not
linear, it presents a risk for being solved and thus to be unfitted to answer the confidentiality constrain
set for this problem.

First we tried to change the place of matrix M in II.3 in hope to find a wind or a trick to avoid having
to share M>M. After that all those tries had failed, we realized that if there was no other way than
having to share M>M, we should add a secondary safety to protect the encryption matrices Mi. That is
how we had the idea to introduce secondary encryption matrices Ki. Every agent thus chooses a second
encryption matrix Ki of size ` × `, but this one needs to be orthogonal. Instead of sharing M>i Mi, an
agent would share KiMi. The secondary encryption matrix would then disappear in the calculation of
Ht + ρM>M since K>i Ki = Id.
This method indeed solves the issue of confidentiality as we desired. Sharing KiMi gives the central
agent `2 additional equations but also adds `2unknowns. Finally the system obtained by all the sharing
yields 2(`2 +`) unknowns for only `2 +2`+1 equations. Therefore xit, Mi nor Ki can’t be calculated with
certainty, effectively protecting the whole system. Furthermore contrarly to Mi, Ki can be changed at
any moment (as long as it stays orthogonal), which makes up for another security form of the algorithm.
Finally the form and order of the updates of the different variables is al following :

30 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING



βit = Sλ/ρ(Miz
i
t−1 − uit−1)

(
Ht−1 + ρ(KM)>(KM)

)
zt = Pt−1 + ρM>(βt + ut−1)

uit = uit−1 + βit −Miz
i
t

Ht = µtHt−1 + (xtM)>(xtM)

Pt = µtPt−1 + (xtM)>yt

(II.14)

Where K = diag(K1,K2, . . . ,Km). This may be performed as long as the different actors desire.
The complete OADMM algorithm hence works as described in algorithm 2. Fig. II.2 represents the
organization of the online distributed learning scheme and may make it easier to understand.

Algorithm 2 Online distributed learning
1: Initialize β0, z0,u0,H0 and P0 at 0.
2:
3: while the agents want to perform distributed learning do
4:
5: for i = 1, . . . ,m do . Distributed among agents
6: βit is calculated as in II.14
7: ŷit|t−1 = xtβ

i
t

8: Agent i sends ŷit|t−1, βit, xitMi, KiMi and M>i (βit + uit−1) to the central one
9: end for

10:
11: Central agent builds ŷt|t−1 and performs his forecast.
12: yt is revealed to him
13: Central agent updates zt,Ht and Pt as in II.14 and sends the zit
14:
15: for i = 1, . . . ,m do . Distributed among agents
16: Update uit as in II.14
17: end for
18:
19: end while

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

31

Distributed learning for high-dimensional wind energy production forecasting

Figure II.2: Organization of the online distributed problem

II.2.3 Reduction of the size of the exchanges when compared to batch
ADMM

A major issue when doing distributed learning in general is the quantity of data shared between the
different actors. Indeed, receivers sometimes struggle to cope with the quantity of data shared with them.
With the advent of Big Data this problem will only get worse, thus needing to find solutions to perform
distributed learning with exchanges as small in data as possible. From this point of view, OADMM is a
major leap forward when compared to batch ADMM.

Let us consider the regular ADMM algorithm, more specifically the exchange from the central agent
to one agent i. Though the former only needs to send three vectors to the latter, namely Xβk, zk
and uk, all three are of size Tbatch which is generally around 5000. Even if one does not need to store
those variables in memory and as such the number of loops performed doesn’t matter, for one agent
this exchange still accounts for 3Tbatch coefficients. Considering that on a grid, typically ma = 50 other
agents are present, at every iteration a contracted agent receives 3maTbatch coefficients. If one codes
these coefficients on a simple float, this represents approximatively 25 Mbit of data received per iteration.

Though it might not seem to much, datasets and number of agents in grids will only increase over
time, making such an expensive in exchanges method unconvenient to use. While the organization of
the distributed learning problem for OADMM seems more complicated, it reduces the effective size of
exchanges between agents.

This time the exchange in the way central agent to agent i only needs the sending of vector zit, which
accounts only for ` = 2 or 3 coefficients, effectively costing less than 96 bits. Even if one considers the
other way around (namely agent i sending data to central agent), the cost of calculation is still decreased.

32 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

While ADMM needs the sending of Xiβ
i
k for every agent i, effectly representing maTbatch coefficients,

the three quantities send towards the central agent (see II.2.2) together account for `2 + 2` coefficients,
representing in total ma(`2 + 2`) received coefficients which is again a lot smaller.

II.3 Analysis of OADMM’s performance on synthetic data
In this section, we will ensure that the OADMM algorithm developed works properly. In order to

do that, we will apply it on synthetic data. Accuracy and competitiveness compared to state-of-the-art
methods will not be addressed here but in the next part. Notations will be the same as in the rest of the
paper, though their meaning will obviously be more abstract.

We will generate two types of synthetic data sets. The first will be stationary autoregressive data,
whereas the second will be gaussian data with structural breaks, like in I.3.1. As usual in order to avoid
randomness of results, we will generate in each test case N = 20 independant data pairs (X,Y) of syn-
thetic data. OADMM will be applied on each of them, and the average estimation over the simulations
then taken.

The sets generated in this section will always be of size T = 7000. The lag ` is set to 2. λ and ρ
are respectively fixed to 5 and 0.5, unless the contrary is stated. The weight vector β, which will be
common to all the N simulations, will only have mp = 4 blocks of ` consecutive non-zero coefficients
and ma` = 80 zero coefficients. The dynamic forgetting factor will be shut off for the first test case
which involves stationary data (i.e. b = 0) and appropriately tuned in the second case. Matrices M
and K will be randomly generated once and fixed for all the N simulations. Though normally the central
agent does not need to choose encryption matrices himself, we will still do it, which may slow down the
algorithm a little but also allows us to assess the robustness of our algorithm.

II.3.1 Stationary autoregressive data
Let us first generate a weight vector β = [β1 β2 . . .βm] where only mp subvectors corresponding

to a set of indices Ωp are non-zero. We remind that the weight vector is the same for all the N = 20
simulations.
The data generation procedure hereafter is identical for all the N simulations. We generate mp au-
toregressive time-series {yit} of lag ` on the model yit = xitβ

i + εit where xit = (yit−1 y
i
t−2) and εit is a

noise. The sum of those mp time-series is taken, which yields the response vector Y . The according
design matrix X is created as following: the submatrices Xi for i ∈ Ωp are obtained by binding by rows
the xit for t ∈ {` + 1, . . . , T}. The rest of the design matrix X is filled with other autoregressive data
generated in a same fashion as previously. This effectively yields a linear model Y = Xβ + ε where the
only non-zero coefficients of β correspond to the subvectors βi, i ∈ Ωp.
Our online ADMM algorithm is thus applied on each of the N couples of data (X,Y) giving N estima-
tions, which are finally averaged, yielding an estimator β̂.

As one can see fig. II.3, the non-zero coefficients of the weight vector β are perfectly estimated by
the algorithm. However the achieved average sparsity for λ = 5 is only around 7%, which is rather poor.
This is why OADMM is again applied on the same data sets (X,Y) for λ ∈ {20, 35, 50} and the same
ρ = 0.5. This results in a sparsity that dramatically increases as one can see fig. II.4, going up to 89%
for λ = 50.
However this increase of sparsity comes at a price. First, a higher λ/ρ ratio overly shrinks the coef-
ficients of the estimator β, effectively growing the bias of the lasso estimator: this can impinge on

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

33

Distributed learning for high-dimensional wind energy production forecasting

the estimation and lead to an increase of the prediction error. Furthermore, a higher λ/ρ ratio means
that the soft-thresholding operator will either add or substract λ/ρ in an exaggerate manner, slowing
down the convergence of the algorithm. These two drawbacks can be seen fig. II.5: for higher λ the
asymptotic `1 error is higher than for lower ones because of the excessive shrinkage. Furthermore, while
for λ = 5 the OADMM algorithm only takes around 700 iterations to meet the convergence criterion∑
i∈Ωp
|β̂i − βi| < 5× 10−3 (corresponding to roughly to 1% of the average absolute value of a non-zero

coefficient of β), it takes 5000 iterations for λ = 50.

Figure II.3: Average estimation over the N = 20 simulations of the 8 non-zero coefficients of β for
λ = 5 and ρ = 0.5

Therefore one cannot just increase the λ/ρ to obtain increased sparsity. It comes at a price that one
must always keep in mind when tuning the parameters. There is a quandary between prediction error
and sparsity, and one should chose their parameters according to what is desired: reducing prediction
error or promoting sparsity. A good compromise between the two should therefore be chosen.

34 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

Figure II.4: Sparsity (in %) of the average estimator β̂ over the N = 20 simulations, over time and for
different λ

Figure II.5: `1 error ∑
i∈Ωp
|β̂i − βi| of the average estimation over the N = 20 simulations

II.3.2 Non-stationary data with structural breaks

Now that OADMM has proven to be efficient on stationary data, we will apply it on time-varying
data to evaluate its tracking abilities, which was one of the motivations when conceiving it.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

35

Distributed learning for high-dimensional wind energy production forecasting

The test will be the same as one performed in I.3.1. We generate a time dependent weight vector βt
with only mp = 4 blocks of ` = 2 consecutive non-zero coefficients, and ma` = 80 zero ones. The non-
zero coefficients will be stepwise constant function with a set of structural breaks R = (t1, t2, . . . , tr).
Again, N = 20 synthetic data sets (X,Y) will be generated exactly like in I.3.1. In this section we
consider again the case of a single structural break at t1 = T/2, i.e. R = {3500}. The reader may
refer to C.3 the appendix for a case with multiple structural breaks.

OADMM is then applied on each of the couples (X,Y), and the average of all the N = 20 estima-
tions is then calculated.

In order to illustrate the need for a forgetting factor, this was first performed with b = 0, which
means without forgetting at all. As one can see in II.7, the algorithm "realizes" that a structural break is
happening at t = 3500 and the estimated values β̂t are starting to change. However the new convergence
is extremely slow due to the inertia accumulated in both Ht and Pt. Therefore without forgetting factor
the online algorithm has tracking abilities, but they are not sufficient.

Figure II.6: Average estimation of the non-zero coefficients of βt with a single structural break, without
dynamic forgetting factor

We finally put the parameters of the dynamic forgetting factor at b = 0.02 (corresponding to a
learning memory of 50 steps), a = 0.7 (since the average MAE is approximately 0.5) and c = −800 (to
have a quickly reacting forgetting factor). As one can see fig. II.8, the dynamic forgetting factor steps-in
at the very moment the structural break happens, resulting in a dramatically increased tracking ability:
the new convergence reached in average only 800 steps after the structural break.

Despite the great improvement in tracking the dynamic forgetting factor brings to the OADMM
algorithm, it also has drawbacks. Adding three supplementary parameters to the algorithm, it makes

36 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

Figure II.7: Average estimation of the non-zero coefficients of βt with a single structural break, with
dynamic forgetting factor

Figure II.8: Average value over the N = 20 simulations of the dynamic forgetting factor µt

tuning extremely tedious. This matter is addressed in detail in II.4.1 and may be one of the biggest
problems with our online ADMM method.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

37

Distributed learning for high-dimensional wind energy production forecasting

II.4 A complete test case on the Danish data set
Since the results on synthetic data were satisfying, we will now apply OADMM on a real data set. It

consists of power measurements of 349 Danish wind power plants performed every 15 minutes between
01/01/2006 and 31/03/2012, yielding a total of 219066 observations for each farm. The data was been
scaled, which means that the measurements of a farm have been divided by the corresponding nomi-
nal power of that farm. The data has also been cleaned from all its measurement errors or corrupted data.

We will consider three test situations, which correspond to different sizes of portefolio. The first will
correspond to the owner of a single wind farm (i.e. mp = 1), the second will correspond to the owner
of a small portefolio Ωp of size mp = 15. The final case will be the one of the system operator of the
grid and will most farms of the grid. The process of the test case for the latter differs from the two
other ones, and will not be explained here but in II.4.4 instead. Every time OADMM will compete with
two state-of-the-art methods, namely batch ADMM presented in the first part and online least-squares.
Since the latter does not provide any possibility of confidentiality, estimation for it will be performed
only using the portefolio Ωp and without exogenous input. The tuning of the parameters λ, ρ and of the
dynamic forgetting factor will be adressed in the next sub-section.

We take T = 40, 000 consecutive time steps from the Danish data set to form our working data
set. For the case of batch estimation, a subset consisting of Tbatch = 25, 000 consecutive samples will
serve as the learning set, yielding a batch estimator β̂. One step-ahead batch estimations of yt for
the next 15, 000 steps are then obtained by ŷt|t−1 = xtβ̂. OLS and OADMM estimations are naturally
performed on-the-fly for the T = 40, 000 time steps. Finally we assess the performance of every of the
three methods. Again we proceed to N = 20 simulation. Boxplots are generally used in order to tone
down errors which could be due to the specificities of a given portefolio of wind farms. In every of those
N simulations a portefolio Ωp of mp close wind farms in generated. Concerning the set of contracted
wind farms Ωa, it will always consist of the ma closest wind farms to the geographical barycenter of Ωp.
However to assess evolution of performance in function of the number of contracted agents, for every of
the N simulations we will try sizes of Ωa going from 5 to 70. Because of that the matrices M and K
will be regenerated for every sizem, though they will be the same for allN simulations of one given sizem.

Evaluation of OADMM when compared to other methods will be done on the prediction error, sparsity
of the estimator and finally on the computation time. Prediction error will be assessed through the means
of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) which are defined as following :

RMSE =
(1
T − t0

T∑
t=t0+1

(yt − ŷt|t−1)2
)1/2

MAE = 1
T − t0

T∑
t=t0+1

|yt − ŷt|t−1|

(II.15)

Where t0 is a time step from which we start measuring the errors. In our case we take t0 = Tbatch + 1
since evaluation of batch ADMM must not be done on the learning set, which would bias the final result.
The difference of interpretation between RMSE and MAE is not an easy point. Both yield similar results,
but RMSE is generally more sensible to outliers than MAE. Since we always have RMSE > MAE, the
greater the difference between the two, the higher the number of outliers in estimation is for a given
method. Once these prediction errors have been calculated for the three methods, we will calculate the
relative improvement of ADMM / OADMM relatively to OLS which allow us to compare efficiently the

38 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

methods to one another:

RMSE% = 100× RMSEOLS − RMSEmethod

RMSEOLS

MAE% = 100× MAEOLS −MAEmethod

MAEOLS

(II.16)

where "method" is either ADMM or OADMM. This quantity will be positive if the method considered
is more performant than OLS, and negative if it is less. Its value will then correspond to the relative
percentage of gain / loss relatively to the benchmark method OLS.

Sparsity of OADMM will be assessed through the percentage of coefficients of β which are zero and
will be plotted over time. The sparsity of the ADMM estimator will also be plotted for comparison. It
must be reminded that the contracted agents don’t help the central one to improve his forecasts for free,
and thus every non-zero coefficient may have a cost.

All the test have been performed on a 64 bytes Intel i7-4810 CPU, with a 2.80 GHz processor.

II.4.1 Tuning of λ, ρ and of the dynamic forgetting factor
Our online ADMM algorithm has 5 parameters to tune: λ and ρ which are involved in the shrinking

of the coefficients as well as b, a and c which are defining the behavior of the forgetting factor. However
those different coefficients cannot be tuned separately, since the two groups of parameters impinge on
each others’ effects. Too high values of λ (or too small of ρ) increase sparsity but slow down the con-
vergence speed of the algorithm. Conversly, a high value of b or a low of a which correspond to easy
forgetting may cause instabilities which need to be compensated through high values of λ to stabilize the
algorithm. However in fact high values of both λ/ρ and b are not usually possible. Indeed, a high value of
b means a high amount of forgetting, which leads after a few iterations to a decrease of Miz

i
t−1−uit−1.

If the threshold ratio λ/ρ is too high, this will have for consequence an almost sparse estimator β, and
lead to terrible forecasts. This issue is illustrated with C.4 which is in the appendix.
This means that it is not possible to tune the different parameters separately. Ergo one must try all the
possible combinations of the parameters to find the one which satisfies him the most. Furthermore a
specific tuning must correspond to a specific size m of a grid, which means that tuning must be redone
when the size of the grid changes significantly.

The tuning process itself is rather classic. One tries to minimize prediction error (generally in terms of
RMSE) on a separate set or through cross-validation to find optimal values of the parameters. However
in our case we also try to promote sparsity, which means that the values of the parameters we chose
may not be the ones which minimize RMSE but satisfy a certain compromise between sparsity and error
minimization.

We therefore tried all possible combination of parameters in a certain range. Each yielded a RMSE
value and a sparsity, and we chose the combination of λ, ρ, a, b and c which satisfied us the most. How-
ever since hereafter in every test we will try different values of ma, a completely optimal value cannot be
obtained for all the different simulations. We thus chose for the two first test cases hereafter to tune on
the generic values mp = 15 and ma = 30, which yield generally good results for all sizes of mp and ma.
The eventual non-optimality of the parameters may only slightly decrease the quality of results, but as
one can see this does not hold back OADMM much. A second tuning is then done for the situation of
the system operator (m = mp) since it differs a lot from the cases mp = 1 and mp = 15. Finally for the

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

39

Distributed learning for high-dimensional wind energy production forecasting

test cases mp = 1 and mp = 15 we chose the values λ = 0.01, ρ = 1, b = 0.05, a = 0.1 and c = −80,
while for the last test case a good tuning is λ = 9× 10−3, ρ = 1, b = 0.05, a = 0.13 and c = −80.

The tuning procedure for batch ADMM was the same, though obviously easier thanks to the presence
of only two parameters. Good couples of values are respectively (λ, ρ) = (0.01, 0.9) and (λ, ρ) =
(8×10−3, 0.9). Finally the tuning of the forgetting factor of online least-squares was done through cross
validation too and µ = 0.9994 yields the best results in most cases.

II.4.2 Case of a single windfarm (mp = 1)
The situation of this section is the one of an owner of a single farm who contracts a varying number

ma of wind farms to improve his forecasts. The results of the simulation are presented in fig. II.9.

OADMM yields the best results out of the three methods. It improves online least-squares forecast
from 6% to 12%, and improves forecast of batch ADMM at least by 2% in terms of RMSE. Similar
(though a little inferior) results are obtained for MAE. This detail may mean that OLS has more often
outliers than the two other methods of estimation, outliers whose significance is toned down in MAE.
Improvements of forecast stagnates for OADMM over ma = 30 contracted farms: this is probably due
to the fact that contracted farms are chosen geographically, and that the further the contracted farms
are, the less interesting information for forecast they hold. This is directly correlated with the increase
of sparsity of the estimator when ma gets bigger. Indeed, far away farms may not yield interesting infor-
mation, and therefore the algorithm puts their corresponding coefficients to 0. Sparsity is very small for
smaller size of contracted sets Ωa since most close farms may hold good information for the contracted
agent.
One may also see that the sparsity of the batch estimator (plotted in dashed lines) is quite inferior than
the one of the online algorithm. Though we are not sure of it, this is probably due to the averaging over
the learning set to which batch estimation proceeds. A few farms may be relevant at first and then not
at all (or conversly), but batch ADMM can’t adapt its estimation over time: thus it averages over the
whole learning set. Besides a learning set of size Tbatch = 25, 000 is rather big, and it might be excessive
for good batch estimation. These two points might be also the reason why for an excessive number of
contracted agents the performance of batch ADMM drops.
Finally one can see that as expected batch ADMM has a calculation time which increases linearly with
m, whereas it grows quadratically for the online algorithm. This is an issue, but since after a certain
number of contracted agents ma there is no more improvement of forecast, one may only be content
with a limited amount of contracts. This way OADMM would be almost as quick as batch ADMM, and
yield better results. In order to be sure what this critical number of contracts is, the central agent could
increase the amount of the latter only progressively, and finally stop when he sees that progress becomes
very small.

A possibility to have better results with batch ADMM would be through sliding windows. At every
time step, batch estimation would be reperformed on the Tbatch last iterations. This would somewhat
solve the issue of time variations tracking. However this would increase dramatically the computational
cost, and is why this method is hardly used in practice.

If one is interested in the aspect of the different estimations comparatively to the real data, the plot
C.5 representing that can be found in Appendix D.

40 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

Figure II.9: Comparison of performance of OADMM with ADMM and OLS for single wind farms (mp = 1)

II.4.3 Case of a portefolio of mp = 15 wind farms
The same experiment was performed, but this time for small portefolios each of size mp = 15. Again,

OADMM performs better than its two competitors in accuracy. It yields similar results than for the pre-
vious part, with improvement between 7 and 12% when compared to OLS and at least 3% compared to
batch ADMM in terms of RMSE. One can again see this "maximal progress" which can be achieved and
which stagnates after a certain number of contracted farms.
Sparsity this time is a lot higher than for the case of a single wind farm, which seems logical. Indeed,
since Ωp is generated from close wind farms, and thus a lot of interesting information is already contained
in the portefolio. Contracting further agents quickly becomes useless, which results in high sparsity of
the estimator. One can see in the top-right plot two brutal changes in sparsity at t ≈ 23, 000 and
t ≈ 28, 000. This is probably due to the dynamic forgetting factor, which means that at this moment
there was a drop of forecasting accuracy.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

41

Distributed learning for high-dimensional wind energy production forecasting

Figure II.10: Comparison of performance of OADMM with ADMM and OLS for portefolios of size
mp = 15

II.4.4 Case of the system operator
In this case we consider the case of the system operator, who aims at reducing his exploitation costs

through better forecasting of renewable energy production. However this time the procedure of testing
is slightly different.

Due to the O(m2) of the OADMM algorithm, in the following example we randomly select only
m = 160 wind farms from the 349 possible of the Danish data set. The resulting data set is then divided
in N = 10 successive sub-sets of 14, 000 consecutive time steps (i.e. the first sub-set will have the
observations from t = 1 to 14, 000, the second from t = 14, 001 to 28, 000, and so on). Batch learning
will be performed on the Tbatch = 10, 000 first steps of those sub-sets, and applied in a similar fashion
as earlier on the next 4, 000 next one. As usual OLS and OADMM will be performed on-the-fly on the
T = 14, 000 time steps. The results obtained are plotted fig. II.11.

OADMM improves OLS estimation by 7% and ADMM one by 11% in terms of RMSE. The results
for MAE are as usual similar though a little inferior, due to the lesser weight given to outliers in MAE. In
this case the results for ADMM are really surprising, as it has troubles to compete with online methods
here. A possible explanation is the following: in the case of the system operator, most farms of the data
set have been taken in account. However due to the cleaning of the latter, a certain number of wind
farms electricity production measurements have discontinuities in them (due to the removal of corrupted
data). Batch ADMM, averaging over a given learning set, may have therefore troubles to find right
coefficients due to these discontinuities, which results in poorer predictions.

42 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

PART II. DEVELOPMENT OF ONLINE ADMM FOR DISTRIBUTED LEARNING

Figure II.11: Comparison of performance of OADMM with ADMM and OLS in the case of the system
operator

Finally the top-right picture represents sparsity for each of the N = 10 simulations (the time steps
represented in x-axis are only relative to a sub-set) over time. As one can see, achieved sparsity stagnates
after some time around 20% for OADMM, which is analogous to batch ADMM. While this may seem
poor, actually it is not bad at all. Indeed in the case of the system operator, the farms are dispatched all
over a country and may thus have very different production from one to another. High sparsity of the
estimator is therefore rarely achievable.

II.5 Future development possibilities
While the OADMM algorithm presented in this paper is an overall success, we are planning to develop

it further, either to improve forecasting accuracy even more or to perform a different type of estimation
than the one performed in this paper.

II.5.1 Improving of the compatibility with the dynamic forgetting factor
By adding the dynamic forgetting factor, one greatly improves the tracking abilities of the online

algorithm. However a forgetting factor, even a dynamic one, always represents a risk. As the reader saw
it earlier in II.4.1, simultaneously having high values of λ/ρ and b is not possible. Therefore there is a
fundamental compromise between sparsity and tracking abilities for OADMM.
For now no solution has been found to that problem. The idea of variants of the lasso penalization

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

43

Distributed learning for high-dimensional wind energy production forecasting

have been tried, such as penalizing comparatively to a batch estimation and not the zero vector (i.e.
replacing the penalty λ|β| by a penalty λ|β − β0|, where β0 could be for instance a batch estimation).
However none of the tried methods have worked for now, and the best way to avoid this problem is to
chose lower values of b when tuning. This matter is still being investigated, and we hope a solution will
be found.

II.5.2 Quantile regression
In this paper, we made the choice to use a quadratic loss function to perform our regressions. There-

fore implicitely we estimated the conditional mean of the average production yt of the central agent
respectively to a given set of regressors, namely the energy productions of the farms of Ωp ∪ Ωa at the
previous time steps. This yields very limited possibilities of statistical interpretation, and one may thus
be interested in quantile regression instead.

Quantile regression aims at estimating the quantiles of a random variable, conditionally to a given
set of regressors. Estimating the quantiles of the average production would give more information about
its variability, and therefore would allow a better management of risks linked to forecasts. The online
minimization problem of the α-ieth quantile is written:

min
β

t−1∑
τ=`+1

ρα(xτβ − yτ) + λ|β| (II.17)

where ρα(u) :=
(
α− 1u<0

)
u.

Reformulating the problem in ADMM form, the optimality problem becomes:min
t−1∑

τ=`+1
ρα(xτMz − yτ) + λ|β|

s.t. βi −Miz
i = 0, ∀i

(II.18)

to which the augmented lagragian is

Lρ =
t−1∑

τ=`+1
ρα(xτMz − yτ) + λ

m∑
i=1
|βi|+ ρ

2 ‖β −Mz + u‖2

A βit update would be obtained exactly like for the case of a quadratic loss. However the z update
becomes problematic, since ρα is not differentiable at 0. Even if it is sub-differentiable, calculating the
subdifferential would lead to a z update which cannot be performed simply by solving a linear system
like II.6. Solutions like linear programming may be used to address this issue, and their compatibility
with OADMM will be analyzed soon.

44 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

Planning of the internship

• Reading of [6] and of papers of state-of-the-art methods: 3 weeks.

• Programming of batch ADMM and online least-squares and application on synthetic data: 2 weeks.

• Searching for already existing methods of online ADMM: 2 week.

• Developing the OADMM algorithm presented in this paper and testing it on synthetic data: 4
weeks.

• Testing the OADMM algorithm and comparing it with other methods on the Danish data set: 3
weeks.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

45

Conclusion

Therefore this project was overall a success. A (semi) online method using the Alternative Direction
Method of Multipliers to proceed to distributed learning has been developed. It yields better results
in forecasting than state-of-the-art methods such as batch ADMM for distributed learning or online
least-squares for both RMSE and MAE criteria, as well as managing better to obtain sparsity in the
estimators. As wanted the presented algorithm protects efficiently the data of the participating actors
through two encryption matrices. The use of a dynamic forgetting factor, though difficult to tune, makes
the developed algorithm good in learning from time varying data.
The online ADMM algorithm also needs very few exchanges between agents and of very little size, which
make its implementation on a real life platform more realistic than its batch counterpart. It thus repre-
sents an interesting option for performing good forecasting of wind power production, for both an agent
owning a few farms or for the system operator. Finally, even if in this paper we took the example of
wind power production forecasting, since the presented method relies only mathematical tools it can be
applied for other types of energy as well (solar for instance).

Notwithstanding those positive points, flaws exist in the developed algorithm. The major drawback
is that it is not fully recursive. It is even slower than the batch method, and calculational burden was one
of the motivations behind the development of an online scheme. While solutions have been investigated
to address this issue, such as the introduction of a fusion center, none have yielded good results. It might
be possible that developing a completely online scheme which protects information is not possible, in
which case somebody who desires a purely recursive algorithm needs to use other methods than ADMM.
Furthermore the tuning of the algorithm, with 5 parameters, is not easy, and there is a dilemma between
having tracking abilities and achieving sparse estimations, which make of OADMM a complicated fore-
cast method to use.

From a more personal point-of-view, this internship was a great opportunity broaden my knowledge
in fields such as optimization and statistical learning, and has conforted me in my future choice of spe-
cialization. It was also an opportunity to develop autonomy: in research the goal is often blurry and
unclear. It is often after many tries and failures that one finds the right path, something which is not
the case in school projects I was used to do until now. This was especially true in this internship: many
ideas proved to be dead ends, and some of them even seem ridiculous when I look back at them. This
gives a light feeling of loss of time, but also enlarges the feeling of achievement when the results of the
here presented OADMM were obtained.

However the work on the latter is not over. With Pierre Pinson we will work on a paper and try to
publish the results we obtained either in IEEE or the International Journal of Forecasting, and I hope this
will succeed. Furthermore, the possibility of performing quantile regression with OADMM would allow
more opportunities of risk management and give more robust estimations, and therefore the compatibility
of the presented algorithm with quantile regression will be analyzed soon.

46 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

Bibliography

[1] J. Dowell and P. Pinson. Very-short-term probabilistic wind power forecasts by sparse vector autore-
gression. IEEE, Transactions on smart grids, 2015.

[2] L. Cavalcante, R. Bessa, M. Reis, and J. Dowell. Sparse structures for very short-term wind power
forecasting. Wind Energy, To be published.

[3] P. Pinson. Introducing distributed learning approaches in wind power forecasting. International
Conference on Probabilistic Methods Applied to Power Systems, 2016.

[4] H. Wang and A. Banerjee. Online alternating direction method. 2012.

[5] T. Suzuki. Dual Averaging and Proximal Gradient Descent for online Alternating direction multiplier
method. Proceedings of the 30rd International Conference on Machine Learning, 2013.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3, No 1, 2010.

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

47

Glossary

ADMM Alternative Direction Method of Multipliers. See [6] for more details.

Batch Learning Learning method performed on a stationary data set.

Central Agent The actor of interest in this paper who tries to improve the forecast of the average
production of his portefolio Ωp. See Portefolio for more information.

Contracted Agents Agents of other wind farms of the grid which have been contracted by the central
agent to help him in his forecasts. The set of the contracted agents’ wind farm is noted Ωa and
consists of ma wind farms.

MAE Mean Absolute Error. See II.15 for a definition.

OADMM Online Alternative Direction Method of Multipliers. An online version of Alternative Direction
Method of Multipliers. See [6] for more details. (ADMM).

OLS Online least-squares. See Appendix A for more detail.

Online Learning A recursive learning method. Learning is performed at every step t, making it more
flexible than batch learning.

Portefolio The set of wind farms of the central agent. It will be noted Ωp and consists of mp wind
farms.

RMSE Root Mean Squared Error. See II.15 for a definition.

Soft Thresholding The soft thresholding function S of threshold κ is the function defined as following:

Sκ(a) =


a− κ if a > κ

a+ κ if a < −κ
0 else

Its definition is generalized to the case of a vector where it is applied coefficient by coefficient.

System operator The operator of the smart grid.

WPP Wind Power Plant.

48 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

Distributed learning for high-dimensional wind energy production forecasting

Appendices

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

49

Distributed learning for high-dimensional wind energy production forecasting

Appendix A

Omitted calculations of the ADMM

A.1 Expression of the fusion center z
After introducing the fusion center z in I.11, one obtains equation I.12 for zik. The can be reinjected

in the I.11, which yields:

zk = argminz
1
2 ‖mz − Y ‖

2 + ρ

2

m∑
i=1

∥∥∥Xiβ
i
k − z − Xiβ

i
k +Xβk − uik−1 + uk−1 + uik−1

∥∥∥2

Since uik−1 does not depend of i and thus uk−1 ≡ uik−1 := uk−1, this gives:

zk = argminz
1
2 ‖mz − Y ‖

2 + mρ

2
∥∥∥z −Xβk + uk−1

∥∥∥2

The zero-gradient condition yields:

m× (mz − Y) +mρ(z −Xβk − uk−1) = 0
This finally yields the expected update of zk+1 given by I.14:

zk = 1
m+ ρ

(Y + ρXβk + ρuk−1)

A.2 Shooting for calculating the β update
The βk update I.15 still needs to solve an optimality problem. An iterative method has been chosen

to do so, and is called shooting. The principle of the method is detailled hereafter. In order to lighten
the notational burden, we will omit the indices and exponants k and i and will keep in mind though
that what is presented below is the shooting to calculate βik, the estimated coefficients corresponding to
agent i at iteration k. This means that we will note for instance Xi only X and Y i

k as Y .

Let ϕ(β) = ‖Xβ − Y ‖2 and ψ(β) = |β| be. Let us also define f = ϕ + 2λ
ρ
. ϕ and ψ are both

convex, and thus f is convex too. It therefore has a subdifferential ∂f(β) for every vector β.

Furthermore, a vector β∗ is an optimum of f iff 0 ∈ ∂f(β∗). Since the subdifferential of a sum is
the sum of subdifferential, this optimality conditions yields in our case:

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

51

Distributed learning for high-dimensional wind energy production forecasting

β∗ ∈ argmin(f)⇔ 0 ∈ 2X>(Xβ∗ − Y) + 2λ
ρ
∂ψ(β∗)

Since ψ is separable in its coordinates, this gives for every coordinate β∗j of β∗:

0 ∈
T∑

t=`+1
Xt,j

(∑̀
k=1

Xt,kβ
∗
k − Yt

)
+ λ

ρ
∂ψ(β∗j), ∀j ∈ {1, 2, . . . , `}

⇔ (x>j xj)β∗j +
∑
t

∑
k 6=j

Xt,jXt,kβ
∗
k − x>j Y︸ ︷︷ ︸

=S0,j

= −λ
ρ
∂ψ(β∗j), ∀j ∈ {1, 2, . . . , `}

where xj represents the j-ieth column of matrix X. Shooting consists in solving the above presented
equations sequentially for every coordinate β∗j of β∗ until a convergence criterion is met or a maximum
number of iterations performed. One solves the above presented equation sequentially by noticing that
β∗j 7→ x>j xjβ

∗
j +S0,j is affine, and that therefore solving this equation for a given j consists in calculating

the intersection between the corresponding affine function and the broken line representing −λ
ρ
∂ψ(β∗j).

This fact is illustrated in fig. A.1 and yields the updates which are presented in the figure and in the
algorithm below. This means that at every iteration p of the shooting algorithm, one obtains an estimate
βjp of β∗j .

Figure A.1: Principle of shooting at one step p to calculate the approximation βjp of β∗j

In the algorithm β may be initialized at the ridge estimator
(
X>i Xi +

λ

ρ
Id
)−1

X>i Y i
k−1 since it is often

close to β∗. Therefore the complete shooting algorithm is the following:

52 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

APPENDIX A. OMITTED CALCULATIONS OF THE ADMM

Algorithm 3 Shooting algorithm at outer loop k for agent i

1: Initialize β0 at
(
X>i Xi + λ

ρ
Id
)−1

X>i Y i
k−1

2:
3: while ‖βp − βp−1‖ > η and p ≤Mloop do
4: for j = 1, . . . , ` do
5:
6: Calculate S0,j
7:
8: if S0,j > λ/ρ then

9: βjp ←
λ/ρ− S0,j

x>j xj
10: else if S0,j < −λ/ρ then

11: βjp ←
−λ/ρ− S0,j

x>j xj
12: else
13: βjp ← 0
14: end if
15: end for
16: p← p+ 1
17: end while
return βp

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

53

Appendix B

Calculations of the online least-squares
algorithm

Online least-squares is the most simple form of online learning. It relies on a Newton-Raphson method
to obtain a resursive learning scheme, which allows to have very few calculations. Here we directly in-
troduce a constant forgetting factor µ.

Let us consider an autoregressive of lag ` model for a time-series {yt} namely yt = xtβt + εt. The
online least-squares problem at step t+ 1 of which βt+1 is solution is:

min
β

1
2

t∑
τ=`+1

µt−τ (xτβ − yτ)2

︸ ︷︷ ︸
=St(β)

For β0 close to β one may perform the Taylor development:

St(β) = St(β0) +
〈−→
∇βSt(β0),β − β0

〉
+
〈
Ht(β0) · (β − β0),β − β0

〉
Where Ht(β0) is the hessian matrix of St evaluated in β0. By taking the gradient of this equation

with respect to β, one gets:

−→
∇βSt(β) = −→∇βSt(β0) +Ht(β0)(β − β0)

For β = βt+1 and β0 = βt (which are supposed close), the optimality of βt+1 makes that the hand-
left term of the equation is zero. This yields ~0 = −→∇βSt(βt) +Ht(β0)(βt+1 − βt). We will furthermore
make the supposition that the hessian is non-singular. In practice one adds a sufficient weight on its
diagonal in order to make this hypothesis valid. Therefore βt+1 is given by the equation:

βt+1 = βt −
(
Ht(β0)

)−1−→
∇βSt(βt)

One has Ht(β0) =
t∑

τ=`+1
µt−τx>τ xτ and is thus independent of the vector in which it is evaluated.

Furthermore since St(β) = St−1(β) + 1
2(xtβ − yt)2, derivation with respect to β and evaluating the

resulting expression for β = βt yields:

−→
∇βSt(βt) = −→∇βSt−1(βt) + x>t (xtβ − yt)

54 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

APPENDIX B. CALCULATIONS OF THE ONLINE LEAST-SQUARES ALGORITHM

Since βt is the solution to the optimality problem at step t, −→∇βSt−1(βt) = ~0. One has therefore the
recursive online least-squares algorithm:βt+1 = βt −H−1

t x
>
t (xtβt − yt)

Ht = µHt−1 + x>t xt
(B.1)

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

55

Appendix C

Omitted calculations for the online ADMM
scheme

C.1 Detailled calculations of the βit update
At step t, the regression vector βit for agent i is obtained by minimizing the function Lβi = λ|βi|+

ρ

2
∥∥∥βi −Miz

i
t−1 + uit−1

∥∥∥2
with respect to βi. Hence βit is a minimum of this objective function iff

0 ∈ ∂Lβi(βit). If ψ again denotes the `1 norm | · |, we have the equivalences:

0 ∈ ∂Lβi(βit) ⇔ 0 ∈ λ
ρ
∂ψ(βit) + βit −Miz

i
t−1 + uit−1

⇔ βit + λ

ρ
∂ψ(βit) = Miz

i
t−1 − uit−1

Similarly to the proof for the shooting method from Appendix A, since the `1 norm is seperable
in its coordinates one obtains the scalar equivalent of the latter equation for every coefficient j. Ergo
calculating the coefficients of βit consists in finding the intersection between the broken lines representing
the components of βit 7→ βit + λ

ρ
∂ψ(βit) and the horizontal lines having for intercepts the coefficients of

Miz
i
t−1 − uit−1. Graphical representation given by fig. C.1 makes it clear that finally βit is given by:

βit = Miz
i
t−1 − uit−1 −

λ

ρ
if Miz

i
t−1 − uit−1 >

λ

ρ

βit = Miz
i
t−1 + uit−1 −

λ

ρ
if Miz

i
t−1 − uit−1 < −

λ

ρ
βit = 0 if |Miz

i
t−1 − uit−1| < 0

Which is precisely βit = Sλ/ρ(Miz
i
t−1−uit−1), with Sλ/ρ being the vectorial soft-thresholding operator.

56 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

APPENDIX C. OMITTED CALCULATIONS FOR THE ONLINE ADMM SCHEME

Figure C.1: Soft-thresholding operation for the calculation of a coefficient of βit

C.2 Proof of the OADMM algorithmic scheme with dynamic
forgetting factor

Adding a dynamic forgetting factor to reduce inertia of the learning process consists in reformulating
the optimality problem as following at step t:


min 1

2

t−1∑
τ=`+1

(t−1∏
k=τ+1

µk

)
(
m∑
i=1
xiτMiz

i − yτ)2 + λ
m∑
i=1
|βi|

s.t. βi −Miz
i = 0, ∀i ∈ {1, 2, . . . ,m}

Since the calculation of βit does not need the two left terms of the objective function, it remains the
same as without forgetting factor.

However derivation with respect to z yields:

t−1∑
τ=`+1

(t−1∏
k=τ+1

µk
)
(xτM)>(xτMz − yτ)− ρM>(βt −Mz + ut−1) = 0

⇔
(t−1∑
τ=`+1

(t−1∏
k=τ+1

µk
)
(xτM)>(xτM)︸ ︷︷ ︸

:=Ht−1

+ρM>M
)
z =

t−1∑
τ=`+1

(t−1∏
k=τ+1

µk
)
(xτM)>yτ︸ ︷︷ ︸

:=Pt−1

+ρ(βt + ut−1)

(C.1)

Since for τ = t− 1 the product
t−1∏

k=τ+1
µk = 1 (it is empty), one has:

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

57

Distributed learning for high-dimensional wind energy production forecasting


Ht−1 =

t−2∑
τ=`+1

(t−1∏
k=τ+1

µk
)
(xτM)>(xτM) + (xt−1M)>(xt−1M)

Pt−1 =
t−2∑

τ=`+1

(t−1∏
k=τ+1

µk
)
(xτM)>yτ + (xt−1M)>yt−1

⇔



Ht−1 = µt−1

t−2∑
τ=`+1

(t−2∏
k=τ+1

µk
)
(xτM)>(xτM)︸ ︷︷ ︸

Ht−2

+(xt−1M)>(xt−1M)

Pt−1 = µt−1

t−2∑
τ=`+1

(t−2∏
k=τ+1

µk
)
(xτM)>yτ︸ ︷︷ ︸

=Pt−2

+(xt−1M)>yt−1

This proves the updates of the OADMM algorithm in the case of a dynamic forgetting factor:
(
Ht−1 + ρM>M

)
zt = Pt−1 + ρ(βt + ut−1)

Ht = µtHt−1 + (xtM)>(xtM)
Pt = µtPt−1 + (xtM)>yt

C.3 Additional plots for the test cases and the case study

C.3.1 Bi-weekly structural breaks for the gaussian data test case
The context is the one of II.3.2, where OADMM was applied on a gaussian generated data with

coefficients to estimate β having structural breaks. Here we take the case of a bi-weekly change, which
corresponds to Tperiod = 1344 steps. The forgetting parameter b was a bit increased when compared to
the case with only one single jump. As such, we set b = 0.04 to have an effective memory of 25 samples.
The values of a and c remain unchanged. As earlier, we repeat the generation of the design matrix X
and the response vector Y N = 20 times.

As one can see, again the dynamic forgetting factor enters in action shortly after the structural breaks
happened and helps the estimators to converge again quickly.

58 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

APPENDIX C. OMITTED CALCULATIONS FOR THE ONLINE ADMM SCHEME

Figure C.2: Average estimation of the non-zero coefficients of βt, with seasonally happening structural
breaks

Figure C.3: Average value over the N = 20 simulations of the dynamic forgetting factor µt

C.3.2 Issues in estimation for b and λ/ρ simultaneously set at high values

In order to illustrate the problem which happens when b and λ/ρ are simultaneously set at high values,
we take again the synthetic data of II.3.2 with structural breaks. As usual estimation will be performed
on N = 20 data sets and then averaged. We set b = 0.1 which corresponds to a memory of 10 samples,
a = 0.9 again and c = −800. As one can see with C.4, after managing initially to estimate the right
values of the non-zero coefficients of β, after the structural break OADMM’s estimation collapses. This
is due to the excessive amount of forgetting: it leads to a low value of Miz

i
t−1−uit−1, and finally to a β̂it

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

59

Distributed learning for high-dimensional wind energy production forecasting

which is almost entirely sparse. The estimation cannot go back to regular values because the prediction
error has increased since the structural break, and does not go down. As such the dynamic forgetting
factor remains active, and thus the algorithm cannot learn efficiently from new incoming data.

Figure C.4: Unstable estimation of the non-zero coefficients of βt due to an excessive b and threshold
λ/ρ

C.3.3 Overlapping of real data yt and its different estimations ŷt for the
Danish data set

Fig. C.5 represents a typical case of overlapping of the real data yt and its one step-ahead estimation
ŷt, for all three compared methods for mp = 15 and ma = 20. One can see that the estimated data fits
very well the real data, although it is lagging behind the real data. This is normal and is very common in
estimation: it is due to the fact that when brutal variations happen, it may take a few additional steps
(due to the autoregressive nature) to make a major change on the estimation.

60 David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

APPENDIX C. OMITTED CALCULATIONS FOR THE ONLINE ADMM SCHEME

Figure C.5: Overlapping of real data {yt} and its estimates {ŷt} for the three different methods, for
mp = 15 and ma = 20

David OBST / Technical University of Denmark
Non-confidential report and publishable on Internet

61

	Confidentiality Notice
	Abstract
	Acknowledgment
	Contents
	List of Figures
	Introduction
	Nomenclature
	I Organization of the distributed learning problem and analysis of state-of-the-art methods
	I.1 Context of the work and state-of-the-art
	I.1.1 Improving forecasts to increase profits in electricity markets and for system operators
	I.1.2 State-of-the-art

	I.2 Mathematical modelization of the problem
	I.2.1 Organization of the learning problem
	I.2.2 Performing distributed learning through the Alternative Direction Method of Multipliers
	I.2.3 Algorithmic scheme of ADMM

	I.3 Shortfall and drawbacks of batch ADMM
	I.3.1 The limit of the stationarity hypothesis
	I.3.2 Convenience of the batch ADMM algorithm in real life

	II Development of Online ADMM for distributed learning
	II.1 Transitioning from batch to online estimation
	II.1.1 Differences between batch and online learning
	II.1.2 The difficulty to develop an online scheme in our case

	II.2 Encrypted online ADMM
	II.2.1 Encrypted OADMM formulation
	II.2.2 Organization of the learning problem with OADMM
	II.2.3 Reduction of the size of the exchanges when compared to batch ADMM

	II.3 Analysis of OADMM's performance on synthetic data
	II.3.1 Stationary autoregressive data
	II.3.2 Non-stationary data with structural breaks

	II.4 A complete test case on the Danish data set
	II.4.1 Tuning of , and of the dynamic forgetting factor
	II.4.2 Case of a single windfarm (mp = 1)
	II.4.3 Case of a portefolio of mp = 15 wind farms
	II.4.4 Case of the system operator

	II.5 Future development possibilities
	II.5.1 Improving of the compatibility with the dynamic forgetting factor
	II.5.2 Quantile regression

	Planning of the internship
	Conclusion
	Bibliography
	Glossary
	Appendices
	A Omitted calculations of the ADMM
	A.1 Expression of the fusion center z
	A.2 Shooting for calculating the update

	B Calculations of the online least-squares algorithm
	C Omitted calculations for the online ADMM scheme
	C.1 Detailled calculations of the ti update
	C.2 Proof of the OADMM algorithmic scheme with dynamic forgetting factor
	C.3 Additional plots for the test cases and the case study
	C.3.1 Bi-weekly structural breaks for the gaussian data test case
	C.3.2 Issues in estimation for b and / simultaneously set at high values
	C.3.3 Overlapping of real data yt and its different estimations t for the Danish data set

